Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Phys ; 10(1): 73, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993667

RESUMO

INTRODUCTION: Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. MATERIALS AND METHODS: Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68-107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. RESULTS: As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12-1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. CONCLUSION: This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals.

2.
Phys Med Biol ; 68(18)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37607560

RESUMO

Objective.This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux.Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a6LiF neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter.Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv·cm2) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4µs) at the reference depth, showed a contribution of flux of 4.07(8) × 103particles·cm-2·s-1and equivalent dose of 1.73(3) nSv per pulse, which is lower by ∼9 orders of magnitude than the delivered dose.Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.


Assuntos
Algoritmos , Elétrons , Calibragem , Raios gama , Nêutrons
3.
Appl Radiat Isot ; 194: 110677, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724616

RESUMO

After a nuclear or radiation event, emergency responders and radiation protection authorities need quick and credible information based on reliable accident and post-accident radiological data. However, risks to people in the vicinity of the source pose serious measurement challenges. Many problems could be solved by unmanned airborne monitoring systems, but the current ones are mostly based on non-spectrometric detectors carried by drones with low bearing, short flying range and flight time. Therefore spectrometric monitoring system based on High-Purity Germanium (HPGe) detector carried by powerful unmanned helicopter has been developed. The presented unmanned aerial spectrometric system is reliable and heavy-duty and enables quick and safe identification of released radionuclides, thus provides a basis for determining the plant damage state and for planning of emergency and contamination zones. The system will support timely, effective actions that protect the public and environment against the effects of ionizing radiation. The paper describes development and performance tests of this novel system.

4.
Phys Med ; 106: 102529, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657235

RESUMO

Stray radiation produced by ultra-high dose-rates (UHDR) proton pencil beams is characterized using ASIC-chip semiconductor pixel detectors. A proton pencil beam with an energy of 220 MeV was utilized to deliver dose rates (DR) ranging from conventional radiotherapy DRs up to 270 Gy/s. A MiniPIX Timepix3 detector equipped with a silicon sensor and integrated readout electronics was used. The chip-sensor assembly and chipboard on water-equivalent backing were detached and immersed in the water-phantom. The deposited energy, particle flux, DR, and the linear energy transfer (LET(Si)) spectra were measured in the silicon sensor at different positions both laterally, at different depths, and behind the Bragg peak. At low-intensity beams, the detector is operated in the event-by-event data-driven mode for high-resolution spectral tracking of individual particles. This technique provides precise energy loss response and LET(Si) spectra with radiation field composition resolving power. At higher beam intensities a rescaling of LET(Si) can be performed as the distribution of the LET(Si) spectra exhibits the same characteristics regardless of the delivered DR. The integrated deposited energy and the absorbed dose can be thus measured in a wide range. A linear response of measured absorbed dose was obtained by gradually increasing the delivered DR to reach UHDR beams. Particle tracking of scattered radiation in data-driven mode could be performed at DRs up to 0.27 Gy/s. In integrated mode, the saturation limits were not reached at the measured out-of-field locations up to the delivered DR of over 270 Gy/s. A good agreement was found between measured and simulated absorbed doses.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/métodos , Prótons , Silício , Transferência Linear de Energia , Água , Terapia com Prótons/métodos
5.
Radiat Prot Dosimetry ; 198(9-11): 670-674, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005969

RESUMO

The Microtron MT25 is a cyclic electron accelerator with a Kapitza resonator, maximum beam energy of 25 MeV, standard repetition frequency of 423 Hz, pulse length of 3.5 µs and mean current of 30 µA. Studies at conventional particle accelerators allow to understand the response of dosemeters in known and controllable radiation fields. Subsequently, it is possible to develop models and predict their behavior in complex radiation fields, such as those generated at laser and FLASH facilities. Therefore, response of thermally and optically stimulated luminescence detectors outside of the beam was studied at the Microtron MT25. The detectors were placed on a Plexiglas phantom inside a lead and iron bunker to shield-off background radiation. In addition, GAFChromic™ films and track detectors were used. Two irradiations were performed: with and without an 8-cm thick polyethylene moderator. This paper presents a comparison of the responses of the different detection systems.


Assuntos
Elétrons , Aceleradores de Partículas , Luminescência , Imagens de Fantasmas
6.
Phys Med ; 101: 79-86, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985102

RESUMO

The track structure of the signal measured by the semiconductor pixel detector Timepix3 was modelled in the Monte Carlo MCNP® code. A detailed model at the pixel-level (256 × 256 pixels, 55 × 55 µm2 pixel size) was developed and used to generate and store clusters of adjacent hit pixels observed in the measured data because of particle energy deposition path, charge sharing, and drift processes. An analytical model of charge sharing effect and the detector energy resolution was applied to the simulated data. The method will help the user sort the measured clusters and distinguish radiation components of mixed fields by determining the response of Timepix3 detector to particular particle types, energies, and incidence angles that cannot be measured separately.

7.
Med Phys ; 49(5): 3432-3443, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35196404

RESUMO

BACKGROUND: Electronic brachytherapy (eBT) is considered a safe treatment with good outcomes. However, eBT lacks standardized and independent dose verification, which could impede future use. PURPOSE: To validate the 3D dose-to-water distribution of an electronic brachytherapy (eBT) source using a small-volume plastic scintillation detector (PSD). METHODS: The relative dose distribution of a Papillon 50 (P50) (Ariane Medical Systems, UK) eBT source was measured in water with a PSD consisting of a cylindrical scintillating BCF-12 fiber (length: 0.5 mm, Ø: 1 mm) coupled to a photodetector via an optical fiber. The measurements were performed with the PSD mounted on a motorized stage in a water phantom (MP3) (PTW, Germany). This allowed the sensitive volume of the PSD to be moved to predetermined positions relative to the P50 applicator, which pointed vertically downward while just breaching the water surface. The percentage depth-dose (PDD) was measured from 0 to 50 mm source-to-detector distance (SDD) in 1-3 mm steps. Dose profiles were measured along two perpendicular axes at five different SDDs with step sizes down to 0.5 mm. Characterization of the PSD consisted of determining the energy correction through Monte Carlo (MC) simulation and by measuring the stability and dose rate linearity using a well-type ionization chamber as a reference. The measured PDD and profiles were validated with corresponding MC simulations. RESULTS: The measured and simulated PDD curves agreed within 2% (except at 0 mm and 43 mm depth) after the PSD measurements were corrected for energy dependency. The absorbed dose decreased by a factor of 2 at 7 mm depth and by a factor of 10 at 26 mm depth. The measured dose profiles showed dose gradients at the profile edges of more than 50%/mm at 5 mm depth and 15%/mm at 50 mm depth. The measured profile widths increased 0.66 mm per 1 mm depth, while the simulated profile widths increased 0.74 mm per 1 mm depth. An azimuthal dependency of > 10% was observed in the dose at 10 mm distance from the beam center. The total uncertainty of the measured relative dose is < 2.5% with a positional uncertainty of 0.4 mm. The measurements for a full 3D dose characterization (PDD and profiles) can be carried out within 8 h, the limiting factor being cooling of the P50. CONCLUSION: The PSD and MP3 water phantoms provided a method to independently verify the relative 3D dose distribution in water of an eBT source.


Assuntos
Braquiterapia , Eletrônica , Método de Monte Carlo , Plásticos , Radiometria , Água
8.
Phys Med ; 80: 134-150, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33181444

RESUMO

UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates is a recently started European Joint Research Project with the aim to develop and improve dosimetry standards for FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and laser-driven medical accelerators. This paper gives a short overview about the current state of developments of radiotherapy with FLASH electrons and protons, very high energy electrons as well as laser-driven particles and the related challenges in dosimetry due to the ultra-high dose rate during the short radiation pulses. We summarize the objectives and plans of the UHDpulse project and present the 16 participating partners.


Assuntos
Elétrons , Radiometria , Lasers , Aceleradores de Partículas , Prótons , Radioterapia , Dosagem Radioterapêutica , Radioterapia de Alta Energia
9.
Appl Radiat Isot ; 156: 108942, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31671334

RESUMO

The aim of the work is to determine the number of positron-electron pair creation in the E0 transition between the 1760.7 keV level and the ground level of the Zr-90 nucleus at the Y-90 decay. The number of conversions is determined from the number of 511 keV photons originating from positron annihilation corrected for the annihilation of positrons in flight. Emission of annihilation photons was determined from the measurements of 511 keV full-energy peak on two calibrated high-purity germanium detectors. The measurements were performed with two sources of a different construction. The first source was a 1 ml ampoule filled with Sr-90 solution (in equilibrium with Y-90) with an activity of 38.041 MBq inserted into an aluminum absorber. The other source was the evaporation residue of the Sr-90 solution (in equilibrium with Y-90) in a polyethylene absorber. In both cases, the annihilation of positrons occurred in the source materials. The efficiency of 511 keV photon detection was determined by Monte Carlo calculation, where the source was defined as a theoretical continuous positron spectrum with a maximum energy of 738 keV. The branching ratio related to the internal pair production during Y-90 decay was determined to be (3.26 ±â€¯0.04) × 10-5 pairs/decay.

10.
Comput Math Methods Med ; 2019: 1641895, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827582

RESUMO

A collection of personal protective equipment (PPE), suitable for use in case of accident in nuclear facilities or radiological emergencies, was gathered at the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. The shielding characteristics of the various PPE materials were measured via narrow geometry spectral attenuation measurements with point radionuclide sources covering a broad range of photon energies. Photon relative penetration and attenuation for relevant energies of the spectra were the principal experimentally determined quantities for tested PPE. Monte Carlo simulations in the MCNPX™ code were carried out to determine photon attenuation for respective energies in the tested PPE, and the results were compared to those determined experimentally. Energy depositions in a unit volume of an ORNL phantom were simulated in a radioactive aerosols atmospheric environment to determine effective doses both for the whole body and in various organs in the human torso during exposure to different dispersed radioactive aerosols while wearing one of the PPE protecting against X- and gamma-ray. This work aimed to determine the effective dose and its decrease for individual PPE protecting against X- and gamma-ray.


Assuntos
Raios gama , Roupa de Proteção , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Aerossóis , Simulação por Computador , Humanos , Método de Monte Carlo , Fótons , Doses de Radiação , Radiografia , Espalhamento de Radiação , Raios X
11.
Appl Radiat Isot ; 134: 351-357, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28899615

RESUMO

Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures.

12.
Appl Radiat Isot ; 134: 167-171, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28754325

RESUMO

A method is described for the subtraction of Monte Carlo simulated detector spectra of the contribution of natural radiation to measured detector spectra aiming to decrease the decision threshold for the detection of artificial radionuclides. HPGe detector spectra were simulated for selected naturally occurring radionuclides deposited onto a filter used for aerosol collection in a newly developed airborne radioactivity monitoring system. Stepwise, the simulated spectra were fitted to the actually acquired gamma-ray spectrum and the decision threshold was determined. Contribution of cosmic rays background was also estimated.

13.
J Appl Clin Med Phys ; 19(1): 138-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29226607

RESUMO

The Convolution algorithm, implemented in Leksell GammaPlan® ver. Here, 10, is the first algorithm for Leksell Gamma Knife that takes heterogeneities into account and models dose build-up effects close to tissue boundaries. The aim of this study was preliminary comparison of the Convolution and TMR10 algorithms for real clinical cases and dosimetric verification of the algorithms, using measurements in a phantom. A total of 25 patients involved in comparison of the Convolution and TMR10 algorithms were divided into three groups: patients with benign tumors close to heterogeneities, patients with functional disorders, and patients with tumors located far from heterogeneities. Differences were observed especially in the group of patients with tumors close to heterogeneities, where the difference in maximal dose to critical structures for the Convolution algorithm was up to 15% compared to the TMR10 algorithm. Dosimetric verification of the algorithm was performed, using a radiochromic gel dosimeter based on Turnbull blue dye in a special heterogeneous phantom. Relative dose distributions measured with the radiochromic gel dosimeter agreed very well with both the TMR10 and Convolution calculations. We observed small discrepancies in the direction in which the largest inhomogeneity was positioned. Verification results indicated that the Convolution algorithm provides a different dose distribution, especially in regions close to heterogeneities and particularly for lower isodose volumes. However, the results obtained with gamma analyses in the gel dosimetry experiment did not verify the assumption that the Convolution algorithm provides more accurate dose calculation.


Assuntos
Algoritmos , Dosimetria Fotográfica , Neoplasias/cirurgia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
14.
Appl Radiat Isot ; 126: 73-75, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28024982

RESUMO

Monte Carlo (MC) simulations were done for the optimization of shielding configuration of a novel industrial radionuclide-specific pre-selection free release measurement facility. The shielding is made from unique bricks of concrete with very low specific activity of natural radionuclides. The final configuration was selected as a compromise between shielding volume and the simulated 1461keV full-energy peak detector count rates of natural 40K.

15.
Appl Radiat Isot ; 114: 167-72, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27236833

RESUMO

Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively.

16.
Appl Radiat Isot ; 109: 160-163, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26653215

RESUMO

Activity standardization of (177)Lu and measurement of two nuclear parameters were done. Activity standardization of (177)Lu was done utilizing the 4πß-γ coincidence method with a combined standard uncertainty of 0.28%. Emission probability of 112.95keV and 208.37keV was measured by calibrated spectrometer with HPGe detector. The efficiency was computed with MCNP code and validated using experimental points. Half-life was derived from prolonged measurement of peak area by three different spectrometer systems and also from measurement with ionization chamber.

17.
Radiat Prot Dosimetry ; 163(3): 373-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24925899

RESUMO

Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac.


Assuntos
Modelos Estatísticos , Nêutrons , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Radiocirurgia/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Método de Monte Carlo , Doses de Radiação , Espalhamento de Radiação
18.
Appl Radiat Isot ; 87: 348-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24300969

RESUMO

A novel free release measurement facility (FRMF) was developed within the joint research project "Metrology for Radioactive Waste Management" of the European Metrology Research Programme. Before and during FRMF design and construction, Monte Carlo calculations with MCNPX and PENELOPE codes were used to optimize the thickness of the shielding, the dimensions of the container, and the shape of detector collimators. Validation of the numerical models of the FRMF detectors and the results of the optimization are discussed in the paper.

19.
Phys Med Biol ; 54(17): 5095-107, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19652291

RESUMO

The recently developed new radiochromic gel dosimeter based on Turnbull blue dye formed by irradiation (the TBG dosimeter) does not exhibit dose pattern degradation due to diffusion effects as observed in the Fricke-gel dosimeter with xylenol orange incorporated into the gel matrix (the FXG dosimeter). The TBG dosimeter can be easily prepared and its optical properties enable evaluation of the gel's response using the cone-beam optical computed tomography technique. The preparation procedure is described in the paper along with the basic characteristics of the gel, including dose response, dose sensitivity, ageing under different storage conditions, diffusion rates of Turnbull blue and gel density. The measurement of diffusion is described in more detail. The same method was applied to the FXG dosimeter for direct comparison. It was found that the diffusion coefficient of the TBG dosimeter stored at 24 degrees C is less than 4 x 10(-3) mm(2) h(-1) (1sigma confidence level), compared to the value of 7.3 x 10(-1) mm(2) h(-1) (1sigma) of the FXG dosimeter measured at the same temperature. Although the TBG dosimeter is less sensitive than the FXG dosimeter, its diffusion coefficient is practically negligible and, therefore, it offers large potential as a three-dimensional dosimeter for applications encompassing sharp dose gradients such as high-dose-rate brachytherapy.


Assuntos
Corantes/química , Ferrocianetos/química , Radiometria/métodos , Difusão , Géis , Modelos Lineares , Fenóis , Sulfóxidos , Temperatura , Fatores de Tempo , Xilenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...